Highspeed-Fotografie - immer am Limit
Das Ziel der Highspeed- oder Kurzzeitfotografie ist, schnell bewegte Objekte scharf aufzunehmen. Die Schärfe des Bildes wird dabei von vielen Kriterien bestimmt, z.B. von der Fokussierung und den Abbildungsfehlern des Objektivs. Am meisten wirkt sich aber die Bewegungsunschärfe aus, gegen die es nur ein einziges wirkliches »Gegenmittel« gibt, nämlich eine möglichst kurze Belichtungszeit. Je schneller das Fotoobjekt, desto kürzer muss logischerweise auch die Belichtungszeit sein.
Aber was ist schnell? Für den einen ist es schon ein Fahrradfahrer, für den anderen erst ein Rennwagen. Aus fotografischer Sicht kommt es aber gar nicht auf die absolute Geschwindigkeit des Objekts an, wichtig ist nur die Geschwindigkeit, mit der sich das Abbild des Fotoobjekts über den Sensor bewegt. Die Skizze rechts soll das verdeutlichen. Sie zeigt Objekte mit extrem unterschiedlichen Eigengeschwindigkeiten, aber gleicher Bildgeschwindigkeit. Ein Insekt, das in 30cm Abstand mit einer Geschwindigkeit von 1m/s vorbeifliegt, ist in der Bildebene genauso schnell wie ein Formel1-Wagen, der in dreißig Meter Entfernung mit 360km/h vorbeirast. Oder wie ein Düsenjet mit Schallgeschwindigkeit in 100m Entfernung. Man könnte auch sagen, alle Objekte haben dieselbe »Winkelgeschwindigkeit«, wobei sich der Ursprung im Objektiv befindet, etwa im Abstand der Brennweite vor dem Sensor. Damit wird auch klar, warum kurzbrennweitige Objektive weniger anfällig für Bewegungsunschärfe sind als langbrennweitige – ihre Bildgeschwindigkeit ist geringer.
Welche Belichtungszeit ist nun notwendig, damit das Bild auf dem Sensor
trotz Bewegung scharf wird? Dazu muß zuerst festgelegt
werden, was »scharf« ist. Ein gängiges Maß dafür ist der
zulässige Durchmesser des Unschärfekreises, wie er z.B. bei der Bestimmung der
Schärfentiefe herangezogen wird. Üblicherweise wird er mit 1/1500 der
Bilddiagonale angenommen, bei einem APS-C-Sensor also D=0,018mm. Für ein
scharfes Bild darf die Bewegungsunschärfe diesen Wert nicht
überschreiten. Die Belichtungszeit t ergibt sich dann aus der einfachen
Beziehung Zeit gleich Weg durch Geschwindigkeit, wobei
als Weg der Durchmesser des Zerstreuungskreises D und v als
Geschwindigkeit des Bildes eingesetzt wird. Damit anstelle der Hilfsgröße
Bildgeschwindigkeit die reale Objektgeschwindigkeit vobj
eingegeben werden kann, muß sie mit dem Abbildungsmaßstab β
multipliziert werden.
Vorausgesetzt, die Bewegung erfolgt rechtwinklig zur
optischen Achse, berechnet sich die notwendige Belichtungszeit nach der
rechts stehenden Gleichung.
Im Falle der Biene ergibt sich mit dem Abbildungsmaßstab β=1/5 (0,2) eine Belichtungszeit t=90µs oder 1/11000s. Dieselbe Zeit erhält man auch beim Flugzeug, das zwar 300mal schneller, aber auch 300mal weiter entfernt ist und deshalb 300mal kleiner abgebildet wird.
Der Blitz als unverzichtbares Hilfsmittel
Für solche kurzen Belichtungszeiten ist ein normaler mechanischer
Schlitzverschluß nicht geeignet. Aber auch ein moderner elektronischer
Verschluß, der vielleicht 1/16000s schafft, führt hier nicht weiter, weil auch
der hellste Sonnenschein nicht hell genug für eine korrekte
Belichtung ist. Das alternative Anheben der ISO-Empfindlichkeit würde die
Bildqualität verschlechtern, ganz abgesehen davon, daß die erforderlichen
Belichtungszeiten meist noch wesentlich kürzer sind. Deshalb führt am
Blitz kein Weg vorbei.
Das Blitzgerät muß eine kurze Blitzzeit mit
möglichst hoher Energie kombinieren – zwei Anforderungen, die nur schwer
gleichzeitig zu erfüllen sind. Die früher oft eingesetzten
Hochspannungs-Blitzgeräte besaßen kleine Blitzkondensatoren und kompensierten
die geringe Kapazität mit einer hohen Spannung von mehreren Kilovolt. Diese
Geräte besaßen eine sehr kurze Blitzzeit bei hoher Energie, sind
aber aus Sicherheitsgründen nahezu »ausgestorben«. Moderne Geräte
besitzen hochkapazitive Blitzkondensatoren bei niedriger Spannung, ihre
Blitzzeit ist deshalb sehr lang. Auf kurze Blitzzeiten kommen sie durch
schlichtes Abschalten des Stromes mittels eines elektronischen
Schalters.
Damit können zwar im manuellen Teilleistungsmodus sehr kurze
Blitzzeiten erreicht werden, allerdings auf Kosten der Blitzenergie. Nützlich
ist deshalb ein Zoom-Reflektor, mit dem sich die Lichtstärke im Telemodus ein
wenig erhöhen läßt. Automatikfunktionen wie TTL, iTTL oder ähnliche sind unnötig
und werden im manuellen Betrieb ohnehin abgeschaltet. Eine evtl.
vorhandene Stromsparautomatik muß auch ausgeschaltet werden, damit das Gerät im
entscheidenden Moment seinen Betrieb nicht einstellt.
Viele ältere Geräte,
die nicht mehr mit den neuen digitalen Kameras kompatibel sind, erfüllen diese
Anforderungen immer noch sehr gut. Deshalb sind Blitzgeräte aus der »analogen«
Zeit eine gute und meist auch preiswerte Wahl für die
Highspeed-Fotografie.
Hier eine kleine Auswahl von getesteten Geräten
(manueller Teilleistungsbetrieb, kürzeste Blitzzeit,
t50):
Man sieht, daß nur das SB-24 die wünschenswerte Blitzzeit merklich überschreitet. Allerdings gehörte es als Systemblitz zur Nikon F4 und ist damit schon 30 Jahre alt. Daß das Alter aber kein automatisches Ausschlußkriterium sein muß, beweist der noch ältere Metz 36CT-3. Im Winder-Modus erreicht er beachtliche 1/40000s. Die Nikon-Blitze SB-25 und SB-26 sind nur unwesentlich langsamer. Das SB-800 als relativ neues Gerät bietet eine hohe Leitzahl und eine recht kurze Blitzzeit. Ungekrönter König ist aber der ebenfalls schon recht betagte Metz 40MZ-3, der es auf die sehr kurze Blitzzeit von 1/50000s bringt. Dank seiner kompakten Bauform und hohen Basis-Leitzahl von 50 (bei Reflektorstellung 105mm) ist er der ideale Blitz für die Highspeed-Fotografie. Die »abgespeckte« Version 40MZ-1 entspricht bis auf den fehlenden Zweitreflektor dem Modell -3i. Das ältere Modell 40MZ-2 unterscheidet sich im Reflektor, der sich nur bis 80mm einstellen läßt.
Neue Blitzgeräte
Die Weiterentwicklung bei den Blitzgeräten ist natürlich nicht
stehengeblieben. Meist betrifft sie die verschiedenen Blitzautomatiken,
aber auch die Größe und das Gewicht. Eines dieser Geräte, das mit einer
hohen LZ=40 bei kleinen Abmessungen hervorsticht, ist das Nissin i40. Mit
ca. 310g
(incl. Akkus) ist es 200g leichter als das Metz 40MZ und wäre für eine
tragbare Anlage eine echte Alternative.
Zum Testen wurden bei Ebay
zwei i40 (für Canon und Nikon) erstanden. Die verschiedenen
Betriebsmodi lassen sich ganz ohne Menus einfach per Wählrad auf der
Rückseite einstellen. Zum Messen der kürzesten Blitzzeit wurde 1/256 im
manuellen Modus ausgewählt. Das Ergebnis war verblüffend. Während der Hersteller
1/20000s angibt, lag die reale Blitzzeit bei t50=17µs
oder 1/58000s. Für die Highspeed-Fotografie ein Traum. Danach sollte das
Gerät zeigen, wie sich die etwas kleinere Lichtleistung im Vergleich mit dem
40MZ-3i auswirkt.
Nachdem das i40 für Canon am Synchronkontakt mit
dem Metz verbunden war, wurden beide Geräte gleichzeitig mittels
Lichtschranke ausgelöst. Schon mit dem bloßen Auge war eine seltsame
Doppelkontur zu sehen, die sich im Foto als ausgewachsene Doppelbelichtung
herausstellte (Bild 1). Aber erst das Speicheroszilloskop zeigte die Ursache:
Das i40 löste fast 1,7ms (!) später aus als das Metz 40MZ-3i (Bild 2). Auch
das i40 für Nikon zeigte dieses eigenartige Verhalten, wenn auch die Verzögerung
nur halb so lang war (Bild 3). Von Zufall kann bei zwei Geräten nicht mehr die
Rede sein. Eine Anfrage beim technischen
Kundenservice von Nissin ergab, daß es sich bei dem Verbindungskabel um ein
Fremdteil handelt... Ah ja, genau, das
war's
Ein
entsprechendes Kabel von Nissin gibt es übrigens gar nicht.
Die Messungen
wurden nach ca. einem Jahr mit einem leicht veränderten Aufbau noch einmal
verifiziert. Die Ergebnisse unterschieden sich wie erwartet nicht
wesentlich.
Nissin - ein Totalausfall
Zum Vergleich wurden noch einmal die ursprünglichen beiden Metz 40MZ
nachgemessen. Ergebnis: Null Verzögerung. Selbst drei 40MZ und zwei SB-800
zündeten absolut synchron. Gar nicht mehr ins Gewicht fiel deshalb das zweite
Ausschlußkriterium des i40, nämlich die nicht abschaltbare Stromsparautomatik.
Pünktlich nach zwei Minuten legt sich das Gerät schlafen und kann nur noch durch
Druck auf den Kameraauslöser oder eine Taste am Blitzgerät aufgeweckt werden
(ein Verhalten, das auch den stärkeren Typ i60A betrifft). Damit sind
diese Geräte für alle Anwendungen »off the cam« ungeeignet.
Immerhin gelobte der Nissin-Service, dieses Problem an die
Entwicklungsabteilung weiterzuleiten und beim nächsten Gerät entsprechend
zu berücksichtigen. Seitdem sind fast drei Jahre vergangen und das
neue i600 ist längst erschienen. Und genau ‒ die
Stromsparfunktion ist weiterhin nicht abschaltbar.
Damit haben sich Nissin
und das i40 für die Highspeed-Fotografie komplett disqualifiziert.
Godox als Ausweg?
Die Suche nach einem ähnlich kleinen und leichten Gerät, das die Nachteile
des i40 nicht besitzt, erwies sich als schwierig. Hersteller wie Meike und
Neewer hatten lediglich das Gehäuse etwas verändert, ansonsten aber
die Nissins eins zu eins geklont. Der leistungsmäßig vergleichbare Metz
M400 konnte noch nicht getestet werden und der noch leichtere Metz
M360 bietet erst gar keinen manuellen Modus, womit er ebenfalls
ausscheidet.
Bleibt
der renommierte Hersteller Godox. Der Typ TT350 ist mit LZ=36 nur
wenig schwächer, bezüglich Größe aber vergleichbar. Und sie brauchen nur
zwei Akkus, was sie noch einmal 50g leichter macht. Auch der
Energiesparmodus läßt sich per Menu abschalten, insgesamt also beste
Voraussetzungen. Dazu kommt die eingebaute Master/Slave-Funksteuerung im
2,4GHz-Band, die weit über eine simple Fernauslösung hinausgeht. Optische
Slaveauslöser gehören damit der Vergangenheit an. Trotz dieser üppigen
Ausstattung lag der Preis nur bei der Hälfte des i40, so daß zwei
Neugeräte (für Nikon) und eines über Ebay (für Fujifilm) geordert wurden.
Die
Geräte machten nicht nur einen hochwertigen Eindruck, das Gehäuse ließ sich
auch ‒ anders als die i40 ‒ wirklich flach aufklappen. Die
größte Überraschung war aber die Blitzdauer: Alle drei Geräte lagen
in der niedrigsten manuellen Stufe 1/128 bei ca. 14us, also
t50≈1/70000s (Bild 4). Neuer Rekord, vergleichbar mit dem
Hochgeschwindigkeitsblitz Hensel SpeedMax, nur nicht so stark.
Doch
dann die Enttäuschung. Trotz synchroner Kabelauslösung zündet
der TT350 erst 58µs nach dem 40MZ-3i (Bild 5). Auch mit zwei oder
drei TT350 allein ist ein einziger Lichtimpuls die Ausnahme,
meist erscheinen mehrere Peaks, die bis zu 160µs (oder noch mehr)
auseinanderliegen
können (Bild 6). Es ist kein System zu erkennen, jeder Versuch führt zu anderen
Ergebnissen. Die Auslösung über ein Kabel, die
absolut synchron erfolgt, wird hier ad absurdum geführt. Ein
völlig unverständliches Verhalten. Offensichtlich besitzen moderne
»überelektronifizierte« Geräte ein Eigenleben, das ältere noch nicht
hatten.
Also wurde das Verbindungskabel entfernt und ein TT350 als Master
konfiguriert, die anderen beiden als Slave. Änderungen, die am Master
vorgenommen wurden, erschienen von nun an wie von Geisterhand auch auf den
Slaves.
Neuer Test, Ergebnis wie vorher. Auch mit Funk keine synchrone
Zündung möglich, die Werte schwankten von Versuch zu Versuch. Wobei eine
gewisse konstante Zeitdifferenz zwischen Master und Slaves
durchaus normal gewesen wäre. Blieb noch ein letzter Ausweg – alle Geräte
als Slaves konfigurieren und einen externen »wireless flash trigger«
als Master nutzen. Aus der Vielzahl dieser Remote Controller wurde der X1T
ausgewählt und gleich noch ein V850II dazubestellt,
mit LZ=60 eine echte Lichtkanone. Das Gerät kommt ohne alle Automatikfunktionen
aus, wobei die gemessene Blitzdauer im manuellen Modus und 1/128
bei ca. 15us oder 1/66000s lag.
Leider auch in dieser
Konfiguration keine Verbesserung. Trotz gemeinsamer Auslösung im Slave-Modus
keine Synchronität der Lichtimpulse. So wird aus vier extrem kurzen
Einzelimpulsen ein langer Blitz von 1/13500s (Bild 7).
Damit sind auch diese auf den ersten Blick
vielversprechenden Geräte für die Highspeed-Fotografie ungeeignet.
Anders sieht es natürlich in der »normalen« Fotografie aus,
wo es nicht auf extrem kurze Blitze ankommt. Hier sind die Godox-Geräte, bei
denen die Master/Slave-Einheit quasi kostenlos mitgeliefert wird,
erste Wahl. Eine Anfrage an Godox blieb vermutlich aus genau diesem
Grund ohne Antwort ‒ es betrifft nur eine verschwindende Minderheit.
Die
Quintessenz aus diesen aufwendigen und auch nicht ganz billigen Tests ist, daß
die bewährten Metz 40MZ vorerst weiterhin die Standardblitze bleiben. Mit
dem Nikon SB-800 als Ergänzung.
Kombination mehrerer Blitzgeräte
Weil die Lichtenergie der »abgeschnittenen« Blitze sehr gering ist, müssen i.a. mehrere Blitzgeräte kombiniert und synchron ausgelöst werden. Üblicherweise wird dafür ein Kabel benutzt, was bei einer größeren Zahl an Blitzgeräten aber schnell in einen unpraktischen »Kabelverhau« ausarten kann. Eine Alternative sind die bekannten optischen IR-Slaveauslöser, die es in vielen Bauformen gibt. Bei manchen Blitzgeräten wie dem SB-26 oder SB-800 sind solche Sensoren bereits eingebaut. Was auf den ersten Blick vorteilhaft aussieht, hat allerdings einen Nachteil: Im Freien und bei größeren Entfernungen läßt die Zündwilligkeit oft zu wünschen übrig. Außerdem ist die Zeitverzögerung dieser optischen Auslöser relativ lang und von Typ zu Typ verschieden. Beim Nikon SU-4 liegt sie bei 41µs, beim Metz Mecalux bei 58µs und beim Nikon SB-26 bereits bei 79µs. Es sollten deshalb nur gleichartige Slave-Auslöser verwendet werden.
Neewer RT-16 ungeeignet
Um diese Nachteile zu vermeiden, geht die Entwicklung hin zur Fernsteuerung auf funktechnischer Basis. Sie funktioniert unabhängig von äußerer Helligkeit und bis zu Entfernungen von einigen zehn Metern. Zum Testen wurde der Typ Neewer RT-16 ausgewählt, der bei Amazon mit einem Sender und drei Empfängern im modernen 2,4GHz-Band angeboten wird. Alle vier Einheiten besitzen einen DIP-Switch, mit dem einer von 16 Kanälen ausgewählt wird. Hier wurde die Werkseinstellung (Kan.16) beibehalten. Der Sender kann entweder auf den Blitzschuh der Kamera gesteckt oder per Taste/Klinkenbuchse ausgelöst werden. Nachdem jeder Empfänger mit einem Blitzgerät (40MZ-3i) verbunden war, wurde zuerst eine eventuelle Verzögerung innerhalb der drei Empfänger selbst gemessen. Erfreulicherweise war sie gleich Null, d.h. alle drei Blitze lösten synchron aus. Danach wurde ein viertes Blitzgerät 40MZ-3i hinzugefügt, das mittels Kabel parallel zum Sender ausgelöst wurde. Das Ergebnis war ernüchternd. Die drei Blitzgeräte an den Fernsteuer-Empfängern leuchteten erst 1,1ms (!) nach dem direkt ausgelösten Metz auf. Eine Ursache für diese Verzögerung könnte sein (muß aber nicht), daß die Funkverbindung nicht im schnellen 2,4GHz-Band (wie von Amazon beworben), sondern tatsächlich im 433MHz-Band erfolgt. Was leider erst nach dem Kauf bei einem Blick in die beiliegende Gebrauchsanweisung auffällt. Die Blitze zünden zwar sicher über eine Entfernung >30m, mit dieser Auslöseverzögerung ist das RT-16 aber ‒ zumindest für die Highspeed-Fotografie ‒ nicht geeignet.
Bilora FB-1
Hier zeigt sich ein etwas merkwürdiges Verhalten. Wird der Sender manuell über die Taste ausgelöst, ergibt sich eine Verzögerungszeit zwischen dem direkt und dem über die Funkstrecke ausgelösten Blitz von ca. 1ms. Wird der Sender jedoch über den Mittenkontakt am Blitzfuß ausgelöst (ergo die Normal-Methode), steigt die Verzögerungszeit auf 3,8ms (Nikon-Version) bzw. 2,67ms (Canon-Version). Für »normale« Fotos mag das gerade noch angehen, für die Zusammenarbeit mit dem schnellen PQS-Verschluß ist diese Funkfernsteuerung jedoch ungeeignet. Der Verschluß ist schon längst wieder geschlossen, wenn der Blitz endlich aufleuchtet.
Hintergrundgestaltung
Das »ewige« Problem der Blitzbeleuchtung ist der schwarze Hintergrund,
hervorgerufen durch die Divergenz der Lichtstrahlen einer
Punktlichtquelle. Erhöht sich die Entfernung zur Lichtquelle um das Doppelte,
vergrößert sich die beleuchtete Fläche auf das Vierfache. Die Beleuchtungsstärke
E sinkt also mit dem Quadrat der Entfernung. Bei doppelter Entfernung sind es
schon zwei Blenden Lichtverlust, bei der 2,8fachen Entfernung drei. Nur bei
parallelem Licht wie dem der Sonne ist die Beleuchtungsstärke
entfernungsunabhängig (wobei das Sonnenlicht natürlich auch divergent ist, wegen
der großen Entfernung der Sonne aber praktisch parallel erscheint).
Wie kann
man nun den schwarzen Hintergrund abschwächen oder ganz verhindern? Durch
stärkere Blitzgeräte nicht, weil sich damit nichts am quadratischen Lichtabfall
ändert. Geeignet wäre ein Aufhellblitz, der näher am Hintergrund steht, oder ein
sog. Hintergrundkarton, der die Entfernung begrenzt. Beide Methoden beschränken
sich aber auf stationäre Aufbauten, bei der Fotografie »aus der Hand« ist das
kaum möglich. Hier entscheidet der Zufall, wie fast immer in der
Highspeed-Fotografie. Eine dritte Möglichkeit wäre, das Licht so weit wie
möglich zu parallelisieren, z.B. mit geeigneten Reflektoren.
Insgesamt tritt
der schwarze Hintergrund aber nur dann voll in Erscheinung, wenn tatsächlich in
ein »schwarzes Loch« geblitzt wird. Das ist relativ selten der Fall, bei den
meisten Fotos ist ein Hintergrund vorhanden und die »Schwärze« fällt weniger
dramatisch aus.
Reaktionsverstärker – die Lichtschranke
Während es mit etwas Übung kein großes Kunststück ist, den fast geradlinig
dahinfliegenden Düsenjet in 100m Entfernung aufzunehmen, ist die Situation bei
»quirligen« Objekten wie kleinen Vögeln oder gar Insekten ganz anders. Das
übliche Nachziehen im Sucher versagt hier vollständig. Erschwerend kommt hinzu,
daß sich das Ganze im Nah- bzw. Makrobereich abspielt, wo die Schärfentiefe nur
noch wenige Zentimeter bis Millimeter groß ist. Wenn man sich nicht auf
Zufallstreffer verlassen will, hilft nur der Einsatz einer Lichtschranke. Sie
ist um Größenordnungen schneller als das menschliche Reaktionsvermögen und
erkennt auch den kleinsten Flieger.
Lichtschranken unterscheiden sich in
vielen Parametern, wobei sich die Einsatzgebiete der einzelnen Typen häufig
überschneiden. Hier einige Unterscheidungsmerkmale:
Vorteile | Nachteile | |||
|
Universell anwendbar, schnell, kleine bis große Distanzen, der Lichtstrahl läßt sich gut bündeln, für kleine Objekte geeignet | Zwei Kabel müssen verlegt werden, u.U. schwierig zu justieren | ||
|
Standard bei vielen Anwendungen, nur ein Kabel notwendig, speziell mit Laser schnell und hohe Distanz möglich | spezieller Reflektor erforderlich | ||
|
Kompakter Aufbau, muß nicht justiert werden, schnell, für sehr kleine Objekte geeignet | begrenzte Distanz | ||
|
Viele Sensorvarianten, für sehr kleine Objekte und beengtes Umfeld, extrem schnell, anreihbar | empfindliche Lichtleiter, Einstellung anspruchsvoll | ||
|
Reflexlichtschranke, die das Objekt selbst als Reflektor benutzt, kein extra Reflektor nötig | Ansprechgenauigkeit relativ schlecht (hängt vom Objekt ab), begrenzte Entfernung |
Weitere Spezifikationen wären
- Ausgangskonfiguration (PNP oder NPN)
- Schaltmodus (hell- oder dunkelschaltend)
- Lichtquelle (Laser oder LED)
- Lichtfarbe (IR, rot, andere)
Nicht alle Lichtschranken sind in allen Modifikationen erhältlich, es findet sich aber so gut wie immer ein geeigneter Typ. Deshalb lohnt sich auch ein Selbstbau nicht mehr. Hier einige konkrete Beispiele:
Prinzip: |
Einweg |
Reflex |
Gabel |
Lichtleiter |
Lichttaster |
Typ: |
Panasonic EX-30 |
Sick WL12L-2B530 |
di-soric OGU-030 |
Panasonic FX-501P |
Sick WT27L-2F430 |
Lichtquelle: |
LED |
Laser |
LED |
LED |
Laser |
Latenzzeit: |
0,5ms |
0,2ms |
0,25ms |
25µs/60µs/0,25ms/2ms |
0,5ms |
Ausgang: |
je nach Typ PNP, NPN |
am Stecker wählbar |
je nach Typ PNP, NPN |
PNP |
PNP |
Reichweite: |
50cm |
15m |
bauartbedingt |
Millimeter bis Meter |
10-100cm |
Für den Einsatz in der Fototechnik muß die Lichtschranke natürlich an die
nachfolgende Schaltung angepaßt werden. Wer sich die Entwicklung einer
speziellen Elektronik sparen will, kann auch zu fertigen Lösungen
greifen. Hier wäre die deutsche Firma eltima electronic zu nennen, die mit
den beiden Familien Joker2 und Jokie2 nahezu alle
Einsatzgebiete abdeckt.
Das Lichtschrankensystem Joker2 kann bis zu
drei Lichtschranken steuern, z.B. als Einfach- oder Kreuzlichtschranke und als
Lichtgitter. Jokie2 ist eine universell einsetzbare Einzellichtschranke im
Mini-Format. Mittlerweile werden die Lichtschranken durch viele
Zusatzsysteme ergänzt.
Eine Alternative wäre die US-amerikanische Firma Cognisys Inc., die gemäß ihrem Motto »Capture the Hidden World« ein sehr großes Angebot für die ausgefallenen Bereiche der Fotografie besitzt. Darunter auch einen speziellen Verschluß für die Highspeed-Fotografie mit der recht kurzen Verzögerungszeit von 5,8ms sowie ein komplettes »Insect-Rig«.
Joker2 |
Jokie2 |
Das leidige Verschluß-Problem
1988 wurde die Nikon F4 vorgestellt, damals die schnellste Profikamera auf
dem Markt. Sie besaß eine Auslöseverzögerung von 43ms, das heißt, diese Zeit
verging vom Druck auf den Auslöser (oder einem Signal am Fernauslösereingang)
bis zur vollen Öffnung des Verschlusses. Ein Insekt, das mit der Geschwindigkeit
von 1m/s durch die Lichtschranke fliegt, wäre also schon 4,3cm weitergeflogen
und hätte das Bildfeld verlassen, bevor der Blitz aufleuchtet.
Seitdem
hat sich die Fototechnik revolutioniert, aber bezüglich der Auslöseverzögerung
hat sich so gut wie nichts getan. Auch heute, 30 Jahre nach der F4, sind selbst
bei modernsten DSLRs »Totzeiten« im Bereich von 30-50ms ganz normal. Warum sich
die Kamera so viel Zeit läßt, gerade auch im manuellen Modus, in dem nichts
berechnet wird, bleibt das Geheimnis der Kameraentwickler. Auf jeden Fall
bedeutet eine derartige Verzögerung das »Aus« für den Einsatz bei
vielen fliegenden Objekten, denn die schnellste Lichtschranke nützt nichts,
wenn sie in der Langsamkeit der Kamera untergeht.
In speziellen Situationen
helfen zwei Methoden, mit dieser Verzögerung umzugehen. Das ist einmal die
Offenblitztechnik, bei der der Verschluß vor der Aufnahme geöffnet wird und die
Lichtschranke nur den Blitz auslöst. Das setzt aber völlige Dunkelheit voraus.
Die andere Methode ist der Vorhalt, bei dem der Fokuspunkt um eine gewisse
Distanz in Richtung der Bewegung verschoben wird. Das funktioniert bei einer
relativ gleichförmigen Bewegung mit einer bekannten (und konstanten)
Geschwindigkeit; bei den völlig unvorhersehbaren Flugbahnen von Insekten oder
kleinen Vögeln ist der Vorhalt aber illusorisch. Hier muß die Latenzzeit von
vornherein so gering wie möglich sein.
Weil ein Eingriff in die Elektronik der Kamera nicht möglich ist, bleibt als Ausweg nur, den langsamen Schlitzverschluß komplett stillzulegen und durch einen schnelleren zu ersetzen. Das ist in der Regel ein Zentralverschluß, der vor dem Objektiv oder zwischen Kamera und Objektiv angeordnet wird. Übliche Zentralverschlüsse kommen aber meist aus der Großformatfotografie und sind von Haus aus weder besonders schnell noch elektrisch auslösbar, sie müssen mit viel Aufwand erst an den beabsichtigten Zweck angepaßt werden. Dann sind Auslöseverzögerungen von weniger als 10ms erreichbar, also eine Verbesserung um den Faktor 5-10.
Ein echter Durchbruch in der Verschlußtechnik gelang aber bereits
1976 der deutschen Firma Rollei mit der Vorstellung der Rolleiflex SLX.
Diese vollelektronische Mittelformat-Kamera war ihrer Zeit um ein Jahrzehnt
voraus, wobei sich das größte Highlight im Objektiv versteckte
– der Hochleistungs-Zentralverschluß. Sein Prinzip war denkbar
einfach – eine Spule, die auf einem extrastarken Permanentmagneten
verschiebbar angeordnet ist. Je nach Stromfluß bewegt sie sich in die eine oder
andere Richtung und öffnet bzw. schließt dabei die Verschlußlamellen. Daher auch
die Bezeichnung Linearantrieb.
Schon in der ersten Ausführung PQ
(Professional Quality) erreichte der Verschluß eine kürzeste Belichtungszeit von
1/500s. Kaum weniger revolutionär war aber die extrem schnelle Ansprechzeit
von 4ms bis zur vollen Öffnung. Etwa 15 Jahre später erschien eine
weiterentwickelte Version, die PQS genannt wurde (Professional Quality Speed).
Seine Verschlußlamellen bestanden aus hauchdünnen Karbonplättchen, die dank
ihrer geringen Masse extrem beschleunigt werden konnten. Dafür sorgte der
Linearantrieb, der über 100W »auf die Spule« brachte. Im Ergebnis halbierte
sich die kürzeste Belichtungszeit auf 1/1000s und die Ansprechzeit auf
2ms. Damit war der PQS-Verschluß weltweit der schnellste Zentralverschluß,
der in »normalen« Kameras eingesetzt wurde. Ein weiterer Vorteil neben der
enormen Geschwindigkeit war die vollautomatische Arbeitsweise. Der
Verschluß muß weder manuell gespannt noch ausgelöst werden, alles funktioniert
elektrisch/elektronisch per µC.
Erstaunlicherweise war dieser
HighTech-Verschluß kein besonderes Thema in der Rollei-Werbung, obwohl man sich
gerade damit von allen anderen Herstellern abhob. Trotzdem gab es
Fotografen, die das enorme Potential dieser Technik sehr frühzeitig
erkannten und ausnutzten, z.B. Fritz
Rauschenbach. Mit der Rolleiflex 6008, einer
Lichtschranke und mehreren Kurzzeitblitzgeräten gelangen ihm Fotos von
fliegenden Insekten und springenden Fröschen, die sich in nichts von denen
Stephen Daltons unterschieden.
Mittlerweile ist der PQS-Verschluß nicht mehr der einzige elektrisch/elektronisch gesteuerte Zentralverschluß. Die US-amerikanische Firma Cognisys hat einen eigenen Verschluß entwickelt, der mit 5,5ms Ansprechzeit aber eher mit dem PQ-Verschluß zu vergleichen ist. Mit dem VS14 bietet die amerikanische Firma Uniblitz einen Verschluß an, der ebenfalls auf 1ms Offnungszeit kommt, aber nur 14mm freien Durchmesser besitzt.
Die bessere Lösung: Der schnellste Zentralverschluß, hier in »Zeitlupe«
Der PQS-Verschluß im Einsatz
Eine von Rollei angefertigte »Spezialversion« des Verschlusses (ohne die
nicht benötigte Blendeneinheit) wurde in ein Alugehäuse eingebaut und an eine
Nikon F4 adaptiert. Die war vor 20 Jahren noch Stand der Technik, außerdem besaß
sie am Batterieteil einen Anschluß für die Fernauslösung – unbedingt
notwendig, aber nicht bei allen Kameras zu finden.
Die Elektronik für die
Ansteuerung des PQS-Verschlusses, die sich normalerweise im Gehäuse der
Rolleiflex befand, mußte extra aufgebaut werden. Sie wurde für eine
Kreuzlichtschranke ausgelegt, die nur dann auslöst, wenn das Fotoobjekt im
Kreuzungspunkt beide Lichtschranken gleichzeitig unterbricht. Der Sinn dahinter
war, den Filmverbrauch zu begrenzen. Zusätzlich konnten über einen
Schalter 15 Programme ausgewählt werden, darunter der Stroboskop-Betrieb
mit bis zu sechs angeschlossenen Blitzgeräten.
Als Blitzgeräte wurden zwei Metz 36CT3 im Winder-Modus eingesetzt, womit eine Blitzdauer von ca. 1/40000s erreicht wurde. Als Lichtschranken kamen anfangs zwei fiberoptische Systeme von Omron zum Einsatz, die sich aber als zu »sperrig« erwiesen und gegen zwei Einweglichtschranken EX-30 von SunX (heute Panasonic) ausgetauscht wurden. Wegen des relativ großen Abstands von der Kamera zum Kreuzungspunkt wurde ein Leitz Photar 5,6/120 vor den Verschluß gesetzt, womit sich ein ABM von ca. 0,4 ergab.
Das Ganze wurde auf einem stabilen Träger aus Aluprofilen befestigt und über
einer erfolgversprechenden Blüte mit ausreichend hohem »Flugaufkommen«
positioniert. Die Kamera wurde auf Modus Bulb eingestellt und ihr
Schlitzverschluß über den Fernsteuereingang vom µC permanent geöffnet. Der
Zentralverschluß war geschlossen und harrte der Dinge, die da kamen. Durchflog
ein Objekt den Kreuzungspunkt der Lichtschranken, wurde der µC aktiv und öffnete
den Zentralverschluß innerhalb von 2ms für eine tausendstel Sekunde. Ein
Mikroschalter im Objektiv löste den Blitz im Moment der größten Öffnung aus.
Danach wurde der Kameraverschluß kurz geschlossen, um den Film
weiterzutransportieren.
Diese stationäre Anlage funktionierte sehr gut und
wurde einige Jahre lang benutzt. Allerdings war sie schwer, unflexibel und
schwierig zu justieren. Und sie verbrauchte viel Film, vielleicht der negativste
Punkt. Am Horizont zeichnete sich aber schon der große Umschwung in der
Fotografie ab, die Digitalisierung. Als mit der D80 die erste
erschwingliche Nikon-DSLR erschien, war es Zeit, umzusteigen. Sie paßte direkt
an die Anlage, besaß aber wegen ihres DX-Sensors ein merklich kleineres Bildfeld
als die F4.
Der elektronische Bildsensor besitzt aber nicht nur
Vorteile. Während es ein Film quasi ewig im Dunkeln aushält, erwärmt
sich ein aktivierter elektronischer Sensor allmählich. Die Folge sind Bildfehler
wie Hotpixel, Farbverfälschungen und starkes Rauschen. Damit diese Fehler nicht
überhandnehmen, muß der Sensor regelmäßig ausgelesen werden. Nach
einer Änderung der Software führte der µC nun alle drei
Minuten eine automatische »Dummyauslösung« der Kamera durch, sofern innerhalb
dieser Zeitspanne keine reguläre Unterbrechung der Lichtschranken
erfolgte.
Das wären zwar im ungünstigsten Fall 20 Bilder pro Stunde, aber die
kosteten nichts mehr. Und deshalb konnte auch die Kreuzlichtschranke
entfallen.
Veränderungen
Es war an der Zeit, über ein neues Konzept nachzudenken. Die Anlage sollte kleiner, leichter und vor allem transportabel sein. Und das alles möglichst ohne aufwendige Einstell- und Justierarbeiten.
Das Ergebnis war die links abgebildete Anlage. Um die Abmessungen zu
reduzieren, mußte die Brennweite verringert werden. Wegen der
Auszugsverlängerung des PQS-Verschlusses und des großen Nikon-Auflagemaßes waren
die Spielräume aber begrenzt, 80mm Brennweite funktionierte gerade
noch. Das Ganze erforderte auch eine neue Elektronik, die wegen des Verzichts
auf die Kreuzlichtschranke, den Stroboskop-Modus und mehrerer Programme
wesentlich kleiner ausfallen konnte.
Die Lichtschranke Panasonic
EX-10 fand innerhalb der Alu-Träger Platz, die einmal auf die korrekte
Entfernung justiert werden. Mit zwei Metz MZ40-3i im Modus 1/128 (ca.
1/30000s), die auf die festmontierten SCA300-Adapter aufgesteckt wurden, reichte
das Licht für Blende 11. Als Energiequelle für den Verschluß und die
Lichtschranke genügte ein 12V-Akkupack aus zehn NiMH-Zellen der Größe AA
oder AAA.
Insgesamt machte sich nur ein Nachteil der Digitaltechnik
wirklich bemerkbar: Der höhere Stromverbrauch der Kamera. Während die Nikon F4
mit geöffnetem Verschluß ca. 100mA verbrauchte, waren es bei der D80 schon
440mA. Ihr relativ kleiner Akku war deshalb bereits nach ca. 3 Std.
erschöpft. Die neuere D7000, die statt eines CCD-Sensors mit einem CMOS-Sensor
ausgerüstet ist, war wieder etwas sparsamer. Obwohl ihr Akku nur 25% mehr
Kapazität besaß, hielt sie die doppelte Zeit durch.
Diese tragbare Anlage ist seit zehn Jahren in Betrieb und arbeitet bisher
völlig fehlerfrei. Mit 3,5kg Gewicht kann sie auch über längere Zeit
noch getragen werden, sie kann aber auch auf einem Stativ geparkt
werden.
Mittlerweile wurde die D7000 gegen eine leichtere Sony
A6000 ausgetauscht, womit sich das Gesamtgewicht auf 3,1kg reduzierte.
Die Blitzsynchronisation - Vorteil für den Zentralverschluß
Ein Schlitzverschluß besteht aus zwei Vorhängen, die sich meist von oben nach unten über das Bildfenster bewegen. Je kürzer die Belichtungszeit, desto schmaler der Schlitz. Die Belichtungszeit, bei der das gesamte Bildfenster noch freigegeben wird, nennt sich Synchronzeit. Nur bis zu dieser Belichtungszeit, normalerweise 1/250s, kann ein Blitz eingesetzt werden. Bei kürzeren Zeiten gibt der Schlitz nicht mehr das gesamte Bildfeld frei und ein einzelner Blitz würde nur noch einen Teil des Bildfeldes belichten.
Dagegen synchronisiert der Zentralverschluß den Blitz bis zur kürzesten Belichtungszeit, im Falle des PQS-Verschlusses also bis 1/1000s. Der große Vorteil ist, daß das Umgebungslicht um mindestens zwei Blendenstufen mehr unterdrückt wird als beim Schlitzverschluß. Geisterbilder und Unschärfen treten wesentlich später oder gar nicht in Erscheinung.
Um den essentiellen Nachteil des Schlitzverschlusses – seine lange
Synchronzeit – zu umgehen, wurde die sog. »Highspeed-Sychronisation« oder
HSS erfunden. Bei dieser Methode werden eine Reihe von Blitzen abgegeben,
während sich der Schlitz über das Bildfeld bewegt. Damit funktionieren auch
noch Belichtungszeiten von 1/8000s. Von einem »Blitz« kann aber nicht mehr
gesprochen werden, eher von einem Dauerlicht. Im Sinne der Highspeed-Fotografie
ist die »Highspeed«-Synchronisation also völlig ungeeignet.
Von
großem Nutzen ist HSS dagegen in der bildmäßigen Fotografie,
z.B. beim Einsatz von Aufhellblitzen im hellen
Sonnenschein.
Die Kamera
Früher stand die Kamera – oder besser das Gehäuse – an erster Stelle.
Inzwischen ist das nicht mehr ganz so wichtig, denn die großen Kamerasysteme
unterscheiden sich nur noch in Nuancen.
Vom ganzen Stolz der Hersteller
– angefangen bei der Multimulti-Blitzautomatik über einen
superschnellen Autofokus bis hin zum optischen Bildstabilisator – wird
in der Highspeed-Fotografie aber nicht nur nichts gebraucht, es muß sogar
abgeschaltet werden. Noch nicht einmal der interne Verschluß, dessen Funktion
»ausgelagert« werden mußte, ist wichtig. Von allen Kamerafunktionen
bleibt nur noch die Speicherung des Bildes übrig, wofür der manuelle
Modus und ein Anschluß für einen elektrischen Fernauslöser
ausreicht.
Allerdings hat sich mit den spiegellosen Kameras (DSLM) eine
ganz neue Klasse etabliert, die den herkömmlichen Spiegelreflexkameras (DSLR)
zunehmend Konkurrenz macht. Neben dem geringeren Gewicht ist
der Hauptvorteil der Spiegellosen ihr viel kleineres Auflagemaß. Wo früher
der Spiegel Platz brauchte, ist nun nichts mehr und das Gehäuse kann
entsprechend flacher ausfallen. Praktisch ist auch ein klappbares Display
und eine »Sucherlupe«, denn erst in der Vergrößerung kann der Fokuspunkt exakt
gefunden und eingestellt werden. Beides ist eher bei den Spiegellosen zu
finden als bei den Spiegelreflexen.
Wichtig ist natürlich
eine hohe Bildqualität. Hier kommt es besonders auf eine hohe Auflösung des
Sensors an, zum einen wegen der Details und zum anderen, weil in der vom
Zufall geprägten Highspeed-Fotografie das Motiv oft am Bildrand liegt,
so daß man um Ausschnitte nicht herumkommt. Genügend »Restpixel« sind
dann von Vorteil.
Den besten Kompromiß zwischen Bildqualität und Kosten bietet derzeit
der Halbformat-Sensor (APS-C), der nahezu alle Anforderungen an eine
hohe Bildqualität erfüllt. Für kleine Objekte, die entsprechend dem ABM auf
den Sensor »passen«, ist er auch völlig ausreichend. Größere Objekte wie z.B.
Schmetterlinge sind aber oft zu groß für das gegebene Bildfeld und werden
beschnitten. Wegen der Auszugsverlängerung des PQS-Verschlusses kann der
ABM aber nicht beliebig verkleinert werden, hier bietet ein größerer
Vollformatsensor (KB, MF) mehr Umfeld.
Meist ist auch der
Dynamikumfang eines Vollformatsensors höher, teilweise erreicht er
schon 15 Blendenstufen. Das häufig erwähnte bessere
Rauschverhalten ist eher ein Vorteil bei wenig Licht, und daran
mangelt es in der Highspeed-Fotografie i. Allg. nicht.
Ob die
Vorteile des Vollformat-Sensors im Vergleich zu einem guten
Halbformat-Sensor den erheblichen Mehrpreis wert sind, muß jeder selbst
entscheiden.
Gerade bei Bildsensoren geht aber die Entwicklung rasant weiter und der
KB-Sensor von heute ist der APS-C-Sensor von morgen. Die steigende
Auflösung stellt aber immer höhere Anforderungen an die Objektive
und dürfte irgendwann an eine physikalische Obergrenze stoßen. Mehr
Potential als in der Steigerung der Pixelzahl liegt daher möglicherweise in der
weiteren Verbesserung des Rauschverhaltens und des Dynamikumfangs.
Für
die Highspeed-Fotografie wünschenswert wäre aber etwas ganz anderes,
nämlich der Ersatz des mechanischen Verschlusses durch eine elektronische
Lösung in Verbindung mit einem »global shutter«. Dieses Prinzip, bei
dem alle Bildinformationen wie ein Schnappschuß gleichzeitig erfaßt und bis zum Ende des Auslesens unverändert bleiben,
gab es bereits zuzeiten des CCD-Sensors. Allerdings erforderte
er einen mechanischen Verschluß zum Schutz der Bildinformationen vor
Licht während des Auslesens.
Erst Spezialversionen wie der
Interline-Transfer-CCD, bei dem die Pixelinformationen vor dem Auslesen
in lichtgeschützte Bereiche verschoben werden, kam ohne mechanischen
Verschluß aus. Seine Auflösung ist allerdings geringer und der Aufbau
komplexer.
Mit der Ablösung des CCD- durch den CMOS-Sensor wurde
das globale Prinzip durch den »rolling shutter« ersetzt, der schon
während der Belichtung zeilenweise ausgelesen wird. Das führt zu Bildfehlern bei
bewegten Objekten und erschwert den Einsatz von Blitzgeräten. Diese Fehler
zeigen übrigens auch Schlitzverschlüsse, während der Zentralverschluß frei davon
ist. Natürlich gibt es mittlerweile auch CMOS-Sensoren mit global shutter, die
ohne mechanischen Verschluß auskommen. Sie sind aber nach wie vor nur in
Industrie- und professionellen Videokameras zu finden, wo sie Belichtungszeiten
bis herunter in den Mikrosekundenbereich
ermöglichen.
Objektive
Weil weder Autofokus noch optische Bildstabilisierung benötigt wird,
genügt ein ganz normales manuelles Objektiv. Natürlich muß es den
Anforderungen genügen, die die modernen Sensoren an das optische System
stellen. Übliche Systemobjektive besitzen aber auf der Rückseite einen mehr
oder weniger langen Tubus zur Anpassung an das Auflagemaß des jeweiligen
Kamerasystems. Da sich an dieser Stelle der
Zentralverschluß befindet, sind solche Objektive hier nicht
geeignet. Das Bild links verdeutlicht dieses Problem.
Geeignet sind
dagegen Objektive, die auf diesen Tubus verzichten
und dementsprechend kürzer ausfallen. Hier schlägt die Stunde
der Vergrößerungsobjektive. Hochleistungssysteme wie das Rodenstock
Apo-Rodagon N 4/80 oder das Schneider Apo-Componon HM 4,5/90
übertreffen bezüglich Auflösungsvermögen und
Abbildungsqualität so manches Systemobjektiv.
In die Lücke bis zum
ABM 1 springt das Schneider Makro-Symmar 5,6/80, das für den ABM von 0,05-1
vorgesehen ist. Optisch liegt es auf demselben Niveau wie die beiden
Vorgänger. Gut geeignet sind auch die schon älteren Photare 5,6/120
und 5,6/80, die als Lupenobjektive eigentlich für den ABM>1
vorgesehen sind. Ihr Auflösungsvermögen ist noch immer legendär und
sie kommen auch mit modernen Bildsensoren problemlos zurecht. Ein Vergleich ist
hier zu finden.
Makro-Symmar 5,6/80 |
Apo-Componon HM 4,5/90 |
Leitz Photar 5,6/80 |
Leitz Photar 5,6/120 |
ABM 0,05-1 |
ABM 0,07-0,5 |
ABM 1-4 |
ABM 0,5-2 |
Die Herausforderung – ein PQS-Objektiv an einer DSLR
Die oben beschriebene Anlage ist mit ihrem fixierten Abbildungsmaßstab von
ca. 0,45 hervorragend geeignet für kleine Insekten. Schon bei größeren
Schmetterlingen kommt sie aber an ihre Grenzen, denn ein Objekt, das breiter als
6cm ist, »füllt« den APS-C-Sensor bereits völlig aus.
Eine
Scharfstellung auf größere Distanzen wird durch die
Auszugsverlängerung des Verschlusses verhindert. Hier hätte eine spiegellose
Kamera durch ihr viel kleineres Auflagemaß zwar Vorteile, aber ein Großteil
des gewonnenen Raumes würde durch einen Schneckentrieb wieder
aufgebraucht.
Die bessere Lösung ist deshalb ein Original-Objektiv mit eingebautem
Zentralverschluß, das sich von Haus aus bis unendlich fokussieren läßt. Solche
Objektive sind von Rollei, Zeiss und Schneider in vielen Brennweiten
erhältlich. Der Nachteil ist, daß sie groß, schwer und meist sehr teuer
sind. Da es auch keinen fertigen Adapter PQS-auf-Nikon/Canon/Sony usw.
gibt, bleibt wieder nur der Selbstbau.
Wie dick der Adapter werden muß, läßt
sich leicht berechnen: Auflagemaß Rollei minus Auflagemaß Nikon.
Unglücklicherweise besitzt Nikon eines der größten Auflagemaße, so daß der
Nikon-Adapter besonders flach ausfällt. In der Realität 74,95mm-46,5mm=28,45mm.
Damit kann dann bis Unendlich fokussiert werden. Natürlich dürfte es
eher selten vorkommen, daß die Lichtschranke einen Kilometer entfernt
steht, praktisch sollte deshalb eine Scharfstellung von 5-10m reichen. Aber hier
ging es ums Prinzip.
Praktisch muß das PQS-Objektiv mit einem Nikon-Bajonett verheiratet werden, wobei der o.g. Abstand zwischen den Auflageflächen eingehalten werden muß. Die »einfache« Lösung ist, den Adapter zu verwenden, den Rollei speziell für seine Studiokamera XAct hergestellt hat. Aber der ist kaum noch zu bekommen. Statt dieses Adapters, bei dem die Bajonettkontakte schon über ein Kabel nach außen geführt wurden, kann auch ein PQS-Zwischenring zweckentfremdet werden, was allerdings eine erhebliche Arbeit bedeutet. Bleibt als letztes noch der Rollei-Umkehradapter, der nur selten für viel Geld zu erhalten ist. Insgesamt ein sehr hoher Aufwand, sowohl konstruktiv als auch mechanisch. Und finanziell sowieso, denn bei der PQS-Technik ist alles teuer.
Die Ansteuerelektronik muß sich diesmal aber nicht nur um den Verschluß kümmern, sondern auch um die Blende. Die notwendige Powerstufe wurde in weiser Voraussicht schon auf der Rückseite der Elektronik für die tragbare Lichtschranke vorgesehen, so daß nur die Bauteile nachbestückt und die Software erweitert werden mußte.
Als Ergebnis erhält man einen Adapter, der »gerade so« noch an die Kamera paßt. Er könnte nun mit jedem Original-PQ/PQS-Objektiv bestückt werden, wie z.B. dem Zeiss Makro-Planar 4/120 HFT PQS, eines der erstrebenswertesten »Schätzchen«. Per Schneckentrieb kann es von 0,8m bis unendlich fokussiert werden und eignet sich damit nicht nur für Insekten, sondern auch für Vögel und Fledermäuse. Mittels Auszugsverlängerung kann es bis ABM 2:1 verwendet werden. Damit geht natürlich das Fokussieren bis Unendlich verloren, aber man kann nicht alles haben.
Eine ganz andere Variante wäre, den Zentralverschluß nicht zwischen Objektiv
und Kamera anzuordnen, sondern vor dem Objektiv. Damit kann jedes
Systemobjektiv an die Kamera angesetzt werden, das wie ein echtes
PQS-Objektiv auf jede Entfernung fokussiert werden kann. Je größer
aber die Frontlinse bzw. der Sensor, desto größer auch die Gefahr von
Vignettierungen. Bei der Anordnung im Bild rechts befindet sich der Verschluß
mit seiner lichten Öffnung von 24mm vor der Frontlinse eines AF Micro-Nikkor
200mm 1:4 D mit ca. 50mm Durchmesser. Mit dem DX-Sensor der D7000 treten
aber noch keine störenden Abschattungen in den Ecken auf.
Kurze
Brennweiten eignen sich im Makrobereich u. U. weniger, weil der Abstand
zwischen Verschluß-Vorderseite und dem Objekt je nach Abbildungsmaßstab zu klein
werden kann.
Alternativen
Alles, was bisher ausgeführt wurde, bezieht sich auf die »klassische« Kurzzeitfotografie mit Lichtschranke und Kurzzeitblitz. Das heißt aber nicht, daß es nicht auch anders geht. Gerade in der digitalen Fotografie, in der die Fotos als solche nichts mehr kosten, ist es u.U. erfolgversprechend, eine Bildsequenz mit dem kameraeigenen Motor aufzunehmen. Bei einer Fotofrequenz von 10B/s ist die Wahrscheinlichkeit hoch, daß ein gelungenes und scharfes Bild darunter ist. Das empfiehlt sich besonders bei Motiven, wo sich eine Lichtschranke nur schwer aufbauen läßt, z.B. Libellen über Wasser. Ein Vorteil ist, daß jedes Objektiv verwendet werden kann und die modernen Automatiken wie AF und die optische Bildstabilisierung zum Zuge kommen. Je kleiner und schneller aber ein Motiv, desto besser schneidet die Lichtschranke ab.